Tetrahedron Letters 50 (2009) 5723-5725

Contents lists available at ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

Synthesis of (+)-striatene: confirmation of its stereostructure

Paul Brémond, Nicolas Vanthuyne, Gérard Audran*

Institut des Sciences Moléculaires de Marseille, Equipes STéRéO et Chirosciences, Université Paul Cézanne, Campus Scientifique de St Jérôme, Case 541, Avenue Escadrille Normandie-Niemen, 13397 Marseille Cedex 20, France

ity was verified by chiral HPLC.

ARTICLE INFO

ABSTRACT

Article history: Received 19 June 2009 Revised 17 July 2009 Accepted 27 July 2009 Available online 6 August 2009

Keywords: Striatene Natural products Enantioselective synthesis (R)-Pulegone

Numerous isolated terpenoids from liverworts possess interesting biological activity.¹ Some of them have characteristic scents, pungency and bitterness, others exhibit bioactivities and medicinal properties.² Takeda and his collaborators reported the isolation of striatene (+)-**1**, which was obtained from liverwort *Ptychanthus striatus.*³ Its structure has been established by spectroscopic analysis, and the absolute configuration by the CD exciton chirality method performed on benzoate derivative **2** prepared in 8 mg by chemical modification of striatene (+)-**1** (Fig. 1). Up to date, no racemic or enantioselective approach of striatene **1** has been developed.

As part of our research programme on the enantioselective synthesis of cyclofarnesane skeleton sesquiterpenoids,⁴ we recently reported the synthesis of natural striatenic acid (+)-**3** isolated from *Cheilolejeuna serpentina* (Fig. 1).⁵ Following our interest concerning the synthesis of rearranged cyclofarnesane products, we present here the first enantioselective total synthesis of natural striatene (+)-**1** in order to confirm its stereostructure. The thermodynamically unstable *Z*-double bond stereochemistry of the C6 side chain in striatene (+)-**1** led us to develop a new synthetic methodology. Our synthetic plan is outlined in Scheme 1.

The chiral information was already encoded in the commercially available starting material, (*R*)-Pulegone (+)-**4**. Conversion of (*R*)-Pulegone into the thermodynamic silyl enol ether (+)-**5** was achieved in three steps in a 59% yield following a reported procedure.⁶ This non-racemic chiral building block was recently used for the synthesis of *ent*-agelasine F.⁷ First, we studied the alkylation

* Corresponding author. Tel./fax: +33 (0)4 9128 8882. E-mail address: g.audran@univ-cezanne.fr (G. Audran). of the in situ generated enolate from (+)-**5**, with the halogenated derivative possessing the entire carbon framework with the required *Z*-double bond. Unfortunately, all attempts in order to prepare the (*Z*)-5-chloro- or (*Z*)-5-bromo-3-methylpenta-1,3-diene in a pure form failed.⁸ As a consequence, we turned our efforts to synthesize another bromo derivative, (*Z*)-5-bromo-3-methylpent-3-en-1-yne.⁹ Then, regeneration of the thermodynamic enolate by treatment with methyllithium, and enolate alkylation with this brominated chain provided a mixture of the diastereomeric alkylated compounds (+)-**6a** and (+)-**6b** in a high total yield in favour of the desired isomer (+)-**6a** (85:15 ratio).

The first enantioselective synthesis of natural striatene (+)-1, isolated from liverwort Ptychanthus striatus,

starting from commercially available (*R*)-Pulegone is described. Its stereostructure was confirmed by X-

ray analysis of a 3,5-dinitrobenzoate derivative obtained from a key intermediate and its high optical pur-

After having conveniently separated these two stereoisomers¹⁰ by column chromatography (73% yield for (+)-**6a**), first attempts to reduce the triple bond of the major compound (+)-**6a** by using standard methods failed (H₂, Pd/CaCO₃ lead-poisoned or H₂, Pd/BaSO₄ quinoline-poisoned). Indeed, no reaction was observed and the unreacted starting material was recovered. Then, we focused our attention by using a hydrometallation methodology. Hydro-zirconation¹¹ using HZrCp₂Cl (Schwartz reagent) generated in situ by reaction of ZrCp₂Cl₂ and Dibal-H as the hydride source

Figure 1. Structures of striatene (+)-1, 2 and striatenic acid (+)-3.

© 2009 Elsevier Ltd. All rights reserved.

^{0040-4039/\$ -} see front matter \circledast 2009 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2009.07.138

Scheme 1. Reagents and conditions: (a) MeLi, Et₂O, -20 °C to rt, 1 h then (*Z*)-5-bromo-3-methylpent-3-en-1-yne, THF, HMPA, -80 °C-rt, 12 h, 73%; (b) ZrCp₂Cl₂, Dibal-H, THF/toluene 3:1, 0 °C, 81%; (c) 3,5-dinitrobenzoyl chloride, Et₃N, DMAP, CH₂Cl₂, 0 °C, 1 h, 91%; (d) TPAP (cat.), NMO, CH₂Cl₂, 4 Å MS, 0 °C-rt, 4 h, 86%; (e) LiHMDS, THF, -80 °C, 1 h then PhNTf₂, THF, -80 °C-rt, 12 h, 83%; (f) Me₂Zn, Pd(PPh₃)₄, THF, 0 °C-rt, 12 h, 71%.

afforded the diastereomeric alcohols (–)-**7a** and (–)-**7b** (90:10 ratio) in an 89% yield. The stereochemistry of the newly generated stereogenic centre in **7a/7b** is of no signification for the final goal. At this stage, an aliquot of **7a/7b** mixture was separated by column chromatography on silica gel and the stereostructure of pure (–)-**7a** was unequivocally determined by single crystal X-ray crystallography of the corresponding 3,5-dinitrobenzoate derivative¹² (+)-**8** (Fig. 2).

Oxidation of the mixture **7a**/**7b** with catalytic tetrapropylammonium perruthenate (TPAP)¹³ and NMO as the co-oxidant gave (+)-**9** in 86% yield. Then, methyllithium was added to the ketone (+)-**9** at 0 °C in Et₂O affording the corresponding tertiary alcohol in 91% yield. Regioselective elimination using different reagents (HCO₂H, TFA, H₂SO₄, SOCl₂ or POCl₃/pyridine) gave as best result an isomeric mixture containing a 2:1 ratio of endocyclic:exocyclic double bonds which were inseparable, in a 70% yield.

In order to prevent the formation of the inseparable *exo* methylene isomer, we decided to use palladium-catalyzed cross-coupling reaction with vinyl triflate (+)-**10** and organometallic reagent. Therefore, compound (+)-**9** was transformed into a vinyl triflate by treatment with LiHMDS followed by addition of PhN(Tf)₂ (Comins reagent) affording (+)-**10** in 83% yield.¹⁴ In a first attempt,

Figure 2. ORTEP projection of the molecular structure of 3,5-dinitrobenzoate (+)-8.

the palladium-catalyzed cross-coupling reaction of vinyl triflate (+)-**10** with trimethylindium¹⁵ in the presence of catalytic amounts of PdCl₂(PPh₃)₂ afforded a 18:22 mixture of natural striatene (+)-1 and the bicyclic compound (+)-11 resulting from an intramolecular 6-exo Heck reaction in 95% yield. Encouraged by this first result, we tried to invert the selectivity of this coupling reaction and turned our attention to modify the organometallic reagent. Negishi coupling methylation¹⁶ with dimethylzinc in the presence of Pd(PPh₃)₄ was accomplished in 88% yield and a 20:80 molar ratio in favour of natural striatene (+)-1. Purification of these two organic compounds by AgNO3-impregnated silica gel column chromatography gave pure striatene (+)-1 in 71% yield. The IR, ¹H and ¹³C NMR spectra of our synthetic sample were in complete agreement with those in the literature. The high optical purity of striatene (+)-1 was confirmed by chiral HPLC (ee >95%). However, the magnitude of the specific rotation of striatene (+)-1 { $[\alpha]_{p}^{25}$ +60.3 (c 1, CHCl₃) disagreed with that given in the literature³ { $[\alpha]_{D}^{25}$ +72.7 (c 1.19, CHCl₃), probably due to an artefact during the extractive processes of the natural product.

In conclusion, the first asymmetric synthesis of striatene (+)-**1** has been accomplished in a short and stereoselective fashion from a commercially available chiral building block, (*R*)-Pulegone, which unambiguously confirms its absolute stereochemistry. In addition, the enantiomer (-)-striatene can be synthesized from the available (*S*)-Pulegone, following the reaction sequence detailed above.

Acknowledgements

The authors acknowledge Dr. M. Giorgi for performing X-ray diffraction experiments and P. Fournier for the English language revision of the manuscript.

References and notes

 Reviews: (a) Asakawa, Y. Pure Appl. Chem. 2007, 79, 557–580; (b) Asakawa, Y.; Ludwiczuk, A.; Nagashima, F.; Toyota, M.; Hashimoto, T.; Tori, M.; Fukuyama, Y.; Harinantenaina, L. Heterocycles 2009, 77, 99–150.

- 2. Asakawa, Y. Curr. Pharm. Des. 2008, 14, 3067-3088.
- (a) Takeda, R.; Mori, R.; Hirose, Y. Chem. Lett. **1982**, 1625–1628; (b) Takeda, R.; Naoki, H.; Iwashita, T.; Mizukawa, K.; Hirose, Y.; Isida, T.; Inoue, M. Bull. Chem. Soc. Jpn. **1983**, 56, 1125–1132.
- (a) Audran, G.; Galano, J.-M.; Monti, H. *Eur. J. Org. Chem.* **2001**, 2293–2296; (b) Uttaro, J.-P.; Audran, G.; Palombo, E.; Monti, H. *J. Org. Chem.* **2003**, 68, 5407–5410; (c) Palombo, E.; Audran, G.; Monti, H. *Tetrahedron Lett.* **2003**, 44, 6463–6464; (d) Palombo, E.; Audran, G.; Monti, H. *Synlett* **2005**, 2104–2106; (e) Palombo, E.; Audran, G.; Monti, H. *Tetrahedron* **2005**, 61, 9545–9549.
- 5. Aubin, Y.; Audran, G.; Monti, H. Tetrahedron Lett. 2006, 47, 3669–3671
- 6. Silyl enol ether (+)-5 was synthesized from commercially available (*R*)-Pulegone (+)-4 according to the literature: (a) Formation of an enantiopure cis/trans mixture of 2,3-dimethylcyclohexanone: methylation see Tori, M.; Uchida, N.; Sumida, A.; Furuta, H.; Asakawa, Y. J. Chem. Soc., Perkin Trans. 1995, 1513–1517 and acid-induced retro aldolisation see Dagneau, P.; Canonne P. Tetrahedron: Asymmetry 1996, 7, 2817–2820; (b) Formation of silyl enol ether (+)-5: Taishi, T.; Takechi, S.; Mori, S. Tetrahedron Lett. 1998, 39, 4347–4350.

- 7. Proszenyák, A.; Brændvang, M.; Charnock, C.; Gundersen, L.-L. Tetrahedron 2009, 65, 194–199.
- (a) Shing, T. K. M.; Zhu, X. Y.; Yeung, Y. Y. Chem. Eur. J. 2003, 9, 5489–5500;
 (b) Wu, Z.; Wouters, J.; Poulter, C. D. J. Am. Chem. Soc. 2005, 127, 17433–17438.
- Rearrangement of commercially available 3-methyl-1-penten-4-yn-3-ol under acidic conditions as described in the literature (Cymerman, J.; Heilbron, I. M.; Jones, E. R. H. J. Chem. Soc. **1945**, 90–94) afforded a Z/E mixture of 3methylpent-4-en-1-yn-3-ol in favour of the Z-stereoisomer (85:15 by GC). The major Z-stereoisomer was easily isolated in pure form by fractional distillation of the mixture through a spinning band.
- All new compounds were fully characterized spectroscopically. Representative spectra data for some new compounds: *Compound* (+)-**Ga**. [*a*]₂₅ +82.5 (c 1.0, CHCl₃), ¹H NMR (300 MHz, CDCl₃): *δ* 0.93 (d, *J* = 7.7 Hz, 3H), 10.0 (s, 3H), 1.47-1.71 (m, 2H), 1.82 (br q, *J* = 1.5 Hz, 3H), 1.74-1.98 (partially overlapped m, 3H), 2.26-2.44 (m, 2H), 2.45-2.61 (m, 2H), 3.08 (s, 1H), 5.69 (br t, *J* = 8.0 Hz, 1H). ¹³C NMR (75 MHz, CDCl₃): *δ* 15.8, 18.8, 23.2, 24.5, 29.4, 37.3, 38.5, 39.2, 52.5, 80.8, 83.4, 118.7, 136.1, 215.8. HRMS (ESI) calcd for C₁₄H₂₁O: 205.1587 (M+H⁺); found 205.1578. *Compound* (+)-**6b**. [*a*]₂₅²⁶ +72.0 (c 1.0, CHCl₃). ¹H NMR (300 MHz, CDCl₃): *δ* 0.99 (d, *J* = 7.7 Hz, 3H), 1.09 (s, 3H), 1.62-1.73 (m, 2H), 1.81 (br s, 3H), 1.75-1.84 (partially overlapped m, 1H), 2.24-2.33 (m, 3H), 2.48-2.58 (m, 2H), 2.79 (dd, *J* = 14.8, 7.5 Hz, 1H), 3.12 (s, 1H), 5.52 (br t, *J* = 7.0 Hz, 1H). ¹³C NMR (75 MHz, CDCl₃): *δ* 0.80 (s, 3H), 0.85 (d, *J* = 6.7 Hz, 3H), 1.025.1587 (M+H⁺); found 205.1577. *Compound* (-)-**7a**. Mp = 49 °C, [*a*]₂₅²⁶ -17.4 (c 1.0, CHCl₃), ¹H NMR (300 MHz, CDCl₃): *δ* 0.80 (s, 3H), 0.85 (d, *J* = 6.7 Hz, 3H), 1.86 (br q, *J* = 1.0 Hz, 3H), 2.20 (add, *J* = 14.9, 7.8 Hz, 1H), 2.52 (ddd, *J* = 14.9, 8.7 Hz, 1H), 3.41 (dd, J), 2.06 (dd, *J* = 14.9, 7.8 Hz, 1H), 2.52

J = 11.2, 4.1 Hz, 1H), 5.11 (br d, J = 10.8 Hz, 1H), 5.23 (br d, J = 17.4 Hz, 1H), 5.51 (t, J = 8.3 Hz, 1H), 6.92 (ddd, J = 17.4, 10.8, 0.7 Hz, 1H). 13 C NMR (75 MHz, CDCl₃): δ 12.7, 15.5, 20.4, 24.2, 30.1, 30.8, 33.9, 36.0, 42.7, 74.1, 114.1, 127.0, 133.8, 134.4. HRMS (ESI) calcd for C₁₄H₂₅ONa: 231.1719 (M+Na⁺); found 231.1721. *Compound* (-)-**7b**. [α]_D²⁵ -21.8 (*c* 1.0, CHCl₃), ¹H NMR (300 MHz, CDCl₃): δ 0.81 (s, 3H), 0.84 (d, *J* = 6.7 Hz, 3H), 1.18–1.30 (m, 1H), 1.38–1.47 (m, 2H), 1.51-1.57 (m, 2H), 1.59-1.63 (m, 1H), 1.64-1.67 (m, 1H), 1.74-1.81 (m, 1H), 1.85 (br q, J = 1.1 Hz, 3H), 2.22 (dd, J = 15.0, 7.8 Hz, 1H), 2.30 (dd, J = 15.0, K.5 Hz, 1H) 3.57 (br s, 1H), 5.11 (br d, *J* = 10.8 Hz, 1H), 5.23 (br d, *J* = 17.3 Hz, 1H), 5.55 (br t, *J* = 8.3 Hz, 1H), 6.87 (ddd, *J* = 17.3, 10.8, 0.9 Hz, 1H). (75 MHz, CDCl₃): δ 15.8, 17.1, 20.1, 20.4, 29.0, 30.4, 34.4, 35.2, 40.9, 73.0, 114.2, 127.6, 133.6, 134.0. HRMS (ESI) calcd for C₁₄H₂₄ONa: 231.1719 (M+Na⁺); found 231.1717. *Compound* (+)-9. [α]_D²⁵ +4.9 (*c* 1.0, CHCl₃), ¹H NMR (300 MHz, CDCl₃): δ 0.88 (d, *J* = 6.7 Hz, 3H), 0.99 (s, 3H), 1.48–1.96 (partially overlapped m, 5H), 1.79 (br q, J = 1.1 Hz, 3H), 2.28-2.45 (m, 3H), 2.53 (ddd, J = 14.9, 6.6, 1.0 Hz, 1H), 5.08 (br d, J = 10.8 Hz, 1H), 5.19 (br d, J = 17.3 Hz, 1H), 5.27 (br t, J = 7.4 Hz, 1H), 6.78 (ddd, J = 17.3, 10.8, 0.7 Hz, 1H). ¹³C NMR (75 MHz, CDCl₃): δ 15.7, 19.1, 20.2, 24.2, 29.2, 33.9, 38.5, 38.7, 52.6, 113.9, 126.9, 133.7, 133.9, 215.8. HRMS (ESI) calc for C14H23O: 207.1743 [M+H⁺]; found: 207.1737. (+)-Striatene (+)-1. + 60.3 (c 1.0, CHCl₃), ¹H NMR (300 MHz, CDCl₃): δ 0.84 (d, J = 6.8 Hz, 3H), 0.90 (s, 3H), 1.39-1.47 (m, 2H), 1.61-1.70 (partially overlapped m, 1H), 1.63 (br q, J = 1.4 Hz, 3H), 1.82 (br s, 3H), 1.94–2.01 (m, 2H), 2.17 (br dd, J = 15.9, 5.0 Hz, 1H), 2.42 (dd, J = 15.9, 8.9 Hz, 1H), 5.08 (d, J = 10.8 Hz, 1H), 5.16-5.22 (partially overlapped m, 1H), 5.19 (d, *J* = 17.4 Hz, 1H), 5.46 (br s, 1H), 6.80 (dd, *J* = 17.4, 10.8 Hz, 1H). ¹³C NMR (75 MHz, CDCl₃): δ 16.2, 19.4, 20.2, 20.8, 25.5, 27.2, 34.3, 34.3, 40.9, 113.4, 124.6, 128.4, 133.3, 134.2, 139.4. HRMS (ESI) calcd for C15H24Ag: 311.0923 [M+Ag+]; found: 311.0922.

- (a) Hart, D. W.; Blackburn, T. F.; Schwartz, J. J. Am. Chem. Soc. 1975, 97, 679– 680; For a convenient procedure of hydrozirconation, see: (b) Huang, Z.; Negishi, E. Org. Lett. 2006, 8, 3675–3678.
- 12. Details of the X-ray structure for compound (+)-**8** can be obtained from the Cambridge Crystallographic Data Centre: CCDC 736783. Copies of the data can be obtained free of charge on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK [Fax: (internat.) +44-1223-336-033; E-mail: deposit@ccdc.cam. ac.uk]. C₂₁H₂₆N₂O₆, M = 402.44 g mol⁻¹. The colourless single crystal (crystal size/mm³: 0.3 × 0.15 × 0.10) was analyzed at 293 K with a Bruker Nonius Kappa-CCD automated four-circle diffractometer using graphite monochromated Mo-K α radiation (λ = 0.71073 Å). Crystal data: trigonal, space group *P*-32, *a* = 15.888(5) Å, *b* = 15.888(5) Å, *c* = 7.307(5) Å, V = 1597.4(13) Å³, Z = 3, Dx = 1.255 g/cm³, F(0 0 0) = 642, and μ (Mo-K $_{\alpha}$) = 0.92 cm⁻¹. 265 parameters were refined on *F*² using 1806 reflections to final indices *R*¹ [*F*² >4 σ (*F*²)] = 0.0559, *wR*₂[(*w* = 1/[σ^2 (*F*²₀) + (0.0535*P*)² + 0.3592*P*) where *P* = (*F*²₀ + 2*F*²_c)/3] = 0.1193. Residual Fourier/e Å⁻³:-0.196; 0.162.
- 13. Griffith, W. P.; Ley, S. V. Aldrichim. Acta 1990, 23, 13-19.
- 14. Comins, D. L.; Dehghani, A.; Foti, C. J.; Joseph, S. P. Org. Synth. 1977, 74, 77-83.
- (a) Pérez, I.; Pérez Sestelo, J.; Sarandeses, L. A. Org. Lett. **1999**, *1*, 1267–1269; (b) Pérez, I.; Pérez Sestelo, J.; Sarandeses, L. A. J. Am. Chem. Soc. **2001**, *123*, 4155– 4160.
- (a) Marshall, J. A.; Zou, D. *Tetrahedron Lett.* **2000**, *41*, 1347–1350; Reviews: (b) Neghishi, E.; Hu, Q.; Huang, Z.; Qian, M.; Wang, G. Aldrichim. Acta **2005**, 38, 71– 92.