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The first enantioselective synthesis of natural striatene (+)-1, isolated from liverwort Ptychanthus striatus,
starting from commercially available (R)-Pulegone is described. Its stereostructure was confirmed by X-
ray analysis of a 3,5-dinitrobenzoate derivative obtained from a key intermediate and its high optical pur-
ity was verified by chiral HPLC.

� 2009 Elsevier Ltd. All rights reserved.
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Numerous isolated terpenoids from liverworts possess interest-
ing biological activity.1 Some of them have characteristic scents,
pungency and bitterness, others exhibit bioactivities and medicinal
properties.2 Takeda and his collaborators reported the isolation of
striatene (+)-1, which was obtained from liverwort Ptychanthus
striatus.3 Its structure has been established by spectroscopic analy-
sis, and the absolute configuration by the CD exciton chirality
method performed on benzoate derivative 2 prepared in 8 mg by
chemical modification of striatene (+)-1 (Fig. 1). Up to date, no
racemic or enantioselective approach of striatene 1 has been
developed.

As part of our research programme on the enantioselective syn-
thesis of cyclofarnesane skeleton sesquiterpenoids,4 we recently
reported the synthesis of natural striatenic acid (+)-3 isolated from
Cheilolejeuna serpentina (Fig. 1).5 Following our interest concerning
the synthesis of rearranged cyclofarnesane products, we present
here the first enantioselective total synthesis of natural striatene
(+)-1 in order to confirm its stereostructure. The thermodynami-
cally unstable Z-double bond stereochemistry of the C6 side chain
in striatene (+)-1 led us to develop a new synthetic methodology.
Our synthetic plan is outlined in Scheme 1.

The chiral information was already encoded in the commer-
cially available starting material, (R)-Pulegone (+)-4. Conversion
of (R)-Pulegone into the thermodynamic silyl enol ether (+)-5
was achieved in three steps in a 59% yield following a reported pro-
cedure.6 This non-racemic chiral building block was recently used
for the synthesis of ent-agelasine F.7 First, we studied the alkylation
ll rights reserved.
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of the in situ generated enolate from (+)-5, with the halogenated
derivative possessing the entire carbon framework with the re-
quired Z-double bond. Unfortunately, all attempts in order to pre-
pare the (Z)-5-chloro- or (Z)-5-bromo-3-methylpenta-1,3-diene in
a pure form failed.8 As a consequence, we turned our efforts to syn-
thesize another bromo derivative, (Z)-5-bromo-3-methylpent-3-
en-1-yne.9 Then, regeneration of the thermodynamic enolate by
treatment with methyllithium, and enolate alkylation with this
brominated chain provided a mixture of the diastereomeric alkyl-
ated compounds (+)-6a and (+)-6b in a high total yield in favour of
the desired isomer (+)-6a (85:15 ratio).

After having conveniently separated these two stereoisomers10

by column chromatography (73% yield for (+)-6a), first attempts to
reduce the triple bond of the major compound (+)-6a by using
standard methods failed (H2, Pd/CaCO3 lead-poisoned or H2, Pd/
BaSO4 quinoline-poisoned). Indeed, no reaction was observed and
the unreacted starting material was recovered. Then, we focused
our attention by using a hydrometallation methodology. Hydro-
zirconation11 using HZrCp2Cl (Schwartz reagent) generated
in situ by reaction of ZrCp2Cl2 and Dibal-H as the hydride source
Striatene
2
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Figure 1. Structures of striatene (+)-1, 2 and striatenic acid (+)-3.
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Scheme 1. Reagents and conditions: (a) MeLi, Et2O, �20 �C to rt, 1 h then (Z)-5-bromo-3-methylpent-3-en-1-yne, THF, HMPA, �80 �C–rt, 12 h, 73%; (b) ZrCp2Cl2, Dibal-H,
THF/toluene 3:1, 0 �C, 81%; (c) 3,5-dinitrobenzoyl chloride, Et3N, DMAP, CH2Cl2, 0 �C, 1 h, 91%; (d) TPAP (cat.), NMO, CH2Cl2, 4 Å MS, 0 �C–rt, 4 h, 86%; (e) LiHMDS, THF, �80 �C,
1 h then PhNTf2, THF, �80 �C–rt, 12 h, 83%; (f) Me2Zn, Pd(PPh3)4, THF, 0 �C–rt, 12 h, 71%.
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afforded the diastereomeric alcohols (�)-7a and (�)-7b (90:10 ra-
tio) in an 89% yield. The stereochemistry of the newly generated
stereogenic centre in 7a/7b is of no signification for the final goal.
At this stage, an aliquot of 7a/7b mixture was separated by column
chromatography on silica gel and the stereostructure of pure (�)-
7a was unequivocally determined by single crystal X-ray crystal-
lography of the corresponding 3,5-dinitrobenzoate derivative12

(+)-8 (Fig. 2).
Oxidation of the mixture 7a/7b with catalytic tetrapropylam-

monium perruthenate (TPAP)13 and NMO as the co-oxidant gave
(+)-9 in 86% yield. Then, methyllithium was added to the ketone
(+)-9 at 0 �C in Et2O affording the corresponding tertiary alcohol
in 91% yield. Regioselective elimination using different reagents
(HCO2H, TFA, H2SO4, SOCl2 or POCl3/pyridine) gave as best result
an isomeric mixture containing a 2:1 ratio of endocyclic:exocyclic
double bonds which were inseparable, in a 70% yield.

In order to prevent the formation of the inseparable exo meth-
ylene isomer, we decided to use palladium-catalyzed cross-cou-
pling reaction with vinyl triflate (+)-10 and organometallic
reagent. Therefore, compound (+)-9 was transformed into a vinyl
triflate by treatment with LiHMDS followed by addition of PhN(Tf)2

(Comins reagent) affording (+)-10 in 83% yield.14 In a first attempt,
Figure 2. ORTEP projection of the molecular structure of 3,5-dinitrobenzoate (+)-8.
the palladium-catalyzed cross-coupling reaction of vinyl triflate
(+)-10 with trimethylindium15 in the presence of catalytic amounts
of PdCl2(PPh3)2 afforded a 18:22 mixture of natural striatene (+)-1
and the bicyclic compound (+)-11 resulting from an intramolecular
6-exo Heck reaction in 95% yield. Encouraged by this first result,
we tried to invert the selectivity of this coupling reaction and
turned our attention to modify the organometallic reagent. Negishi
coupling methylation16 with dimethylzinc in the presence of
Pd(PPh3)4 was accomplished in 88% yield and a 20:80 molar ratio
in favour of natural striatene (+)-1. Purification of these two organ-
ic compounds by AgNO3-impregnated silica gel column chroma-
tography gave pure striatene (+)-1 in 71% yield. The IR, 1H and
13C NMR spectra of our synthetic sample were in complete agree-
ment with those in the literature. The high optical purity of stria-
tene (+)-1 was confirmed by chiral HPLC (ee >95%). However, the
magnitude of the specific rotation of striatene (+)-1 {½a�25

D +60.3
(c 1, CHCl3)} disagreed with that given in the literature3 {½a�25

D

+72.7 (c 1.19, CHCl3)}, probably due to an artefact during the
extractive processes of the natural product.

In conclusion, the first asymmetric synthesis of striatene (+)-1
has been accomplished in a short and stereoselective fashion from
a commercially available chiral building block, (R)-Pulegone, which
unambiguously confirms its absolute stereochemistry. In addition,
the enantiomer (�)-striatene can be synthesized from the available
(S)-Pulegone, following the reaction sequence detailed above.
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